Information frictions

Ludwig Straub

Goethe Heterogeneous Agents Workshop, June 2024

Information frictions

- * So far, have assumed full information & rational expectations ("FIRE")
- * Next: Deviations from FIRE ("information frictions")
 - * incomplete information (e.g. noisy information, sticky information)
 - * deviations from rational expectations (e.g. cognitive discounting, level k thinking)
- * Leading contender to explain key puzzles in macro & finance, e.g.
 - * Why do { π_t , I_t , C_t } respond so **sluggishly** to aggregate shocks? (but not to idiosyncratic shocks)
 - * Why do asset prices overreact to shocks?

A slight problem

- * Deviations from FIRE already hard to simulate within simple RA models!
 - * e.g. Mankiw Reis 2007, Mackowiak Wiederholt 2015
- * Goal: Coherent framework to model and simulate deviations from FIRE
 - * ... not just RA, but also HA! (or any other block ...)
- * Materials here mostly a version of the approach we have developed for "Micro Jumps, Macro Humps..."

Introductory example

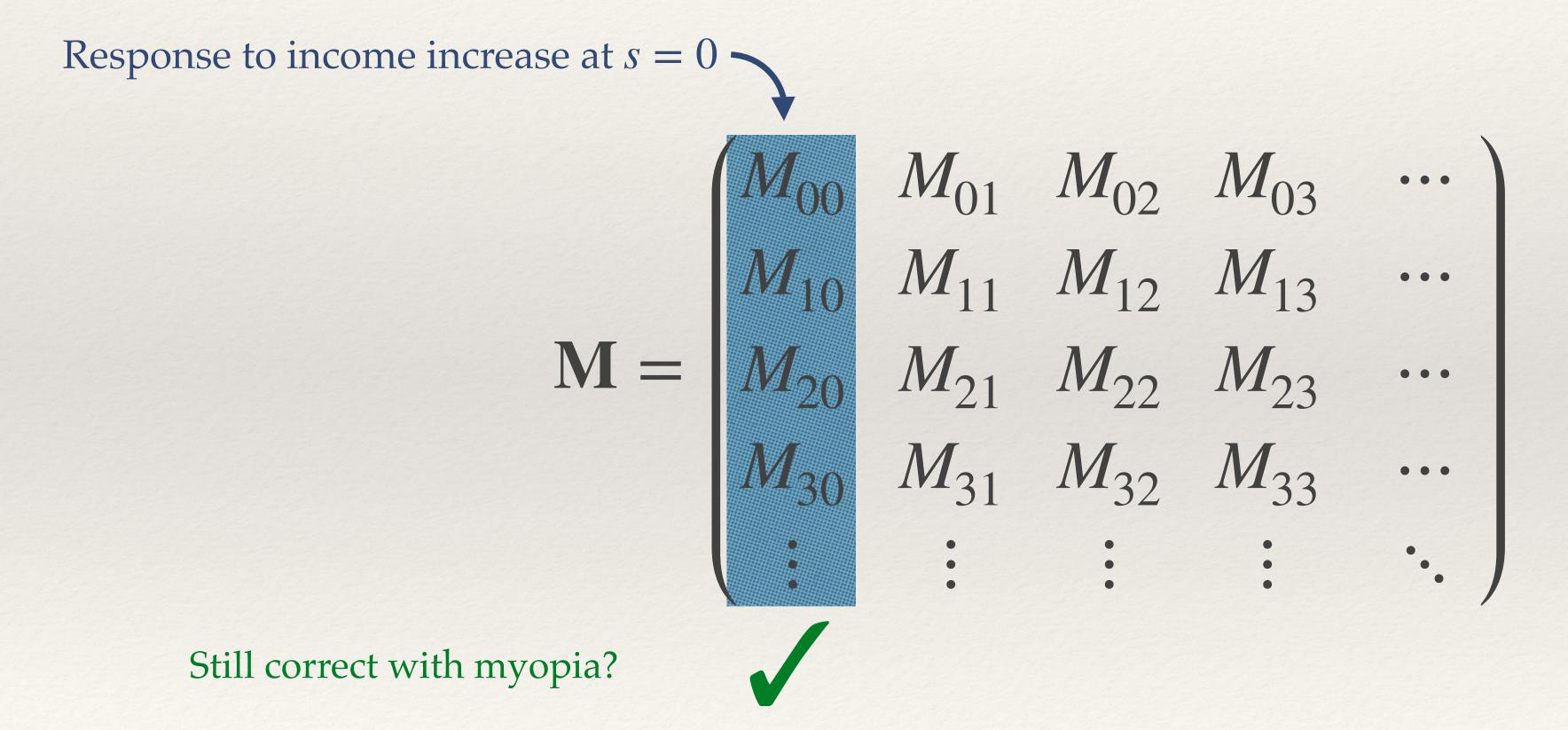
Monetary policy with myopic agents

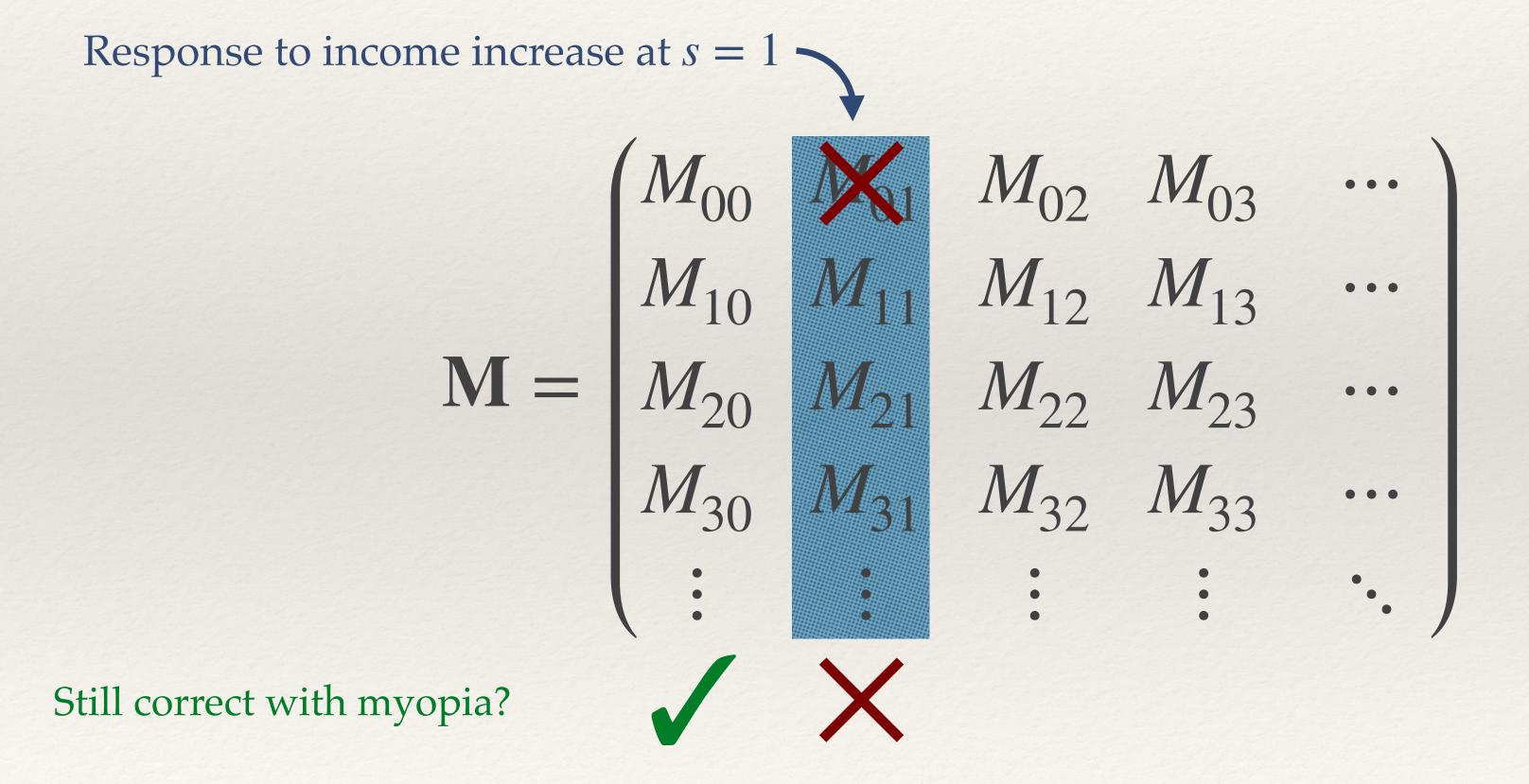
* IKC equation for monetary policy

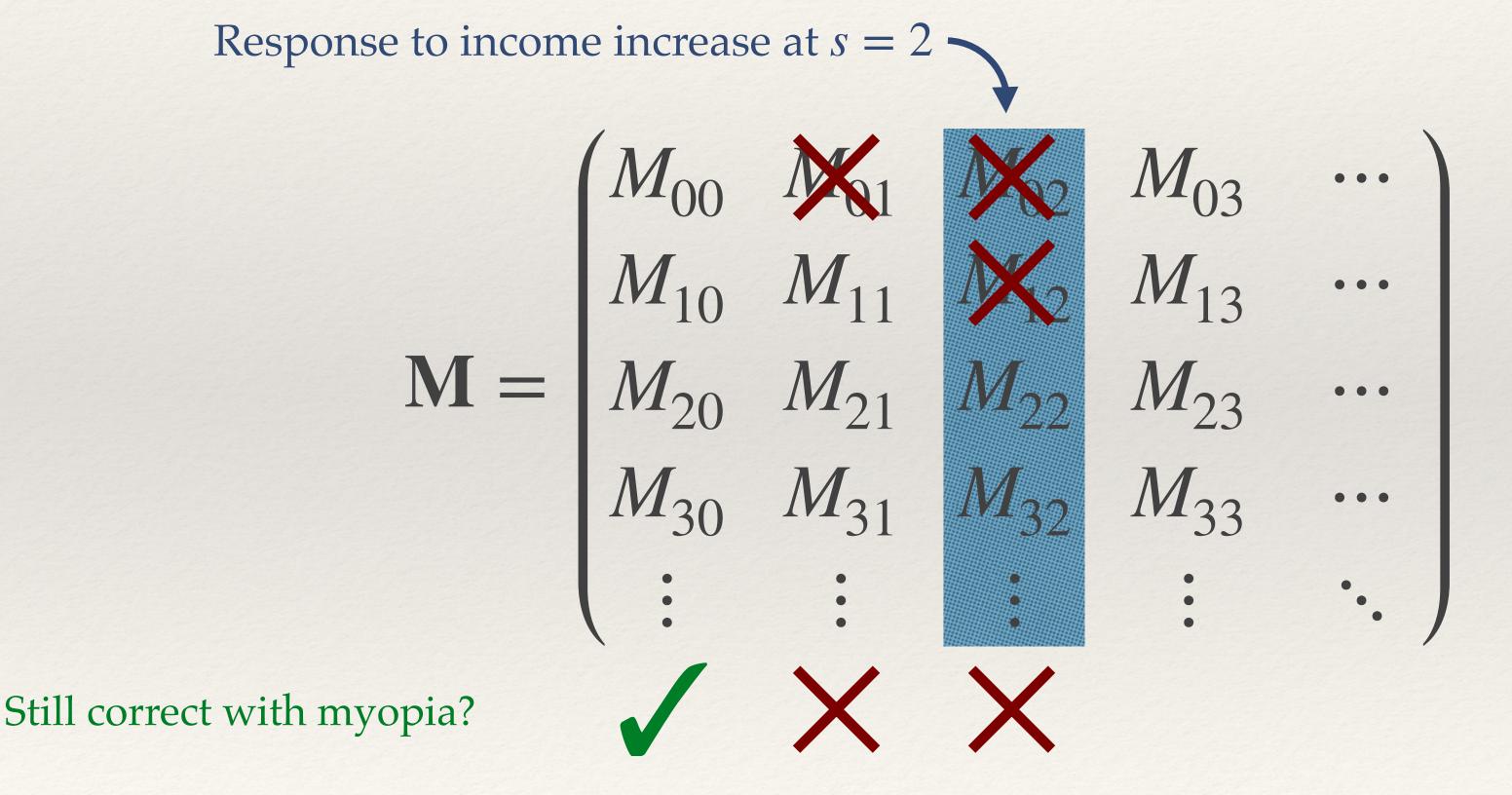
$$d\mathbf{Y} = \mathbf{M}^r d\mathbf{r}^{ante} + \mathbf{M} d\mathbf{Y}$$

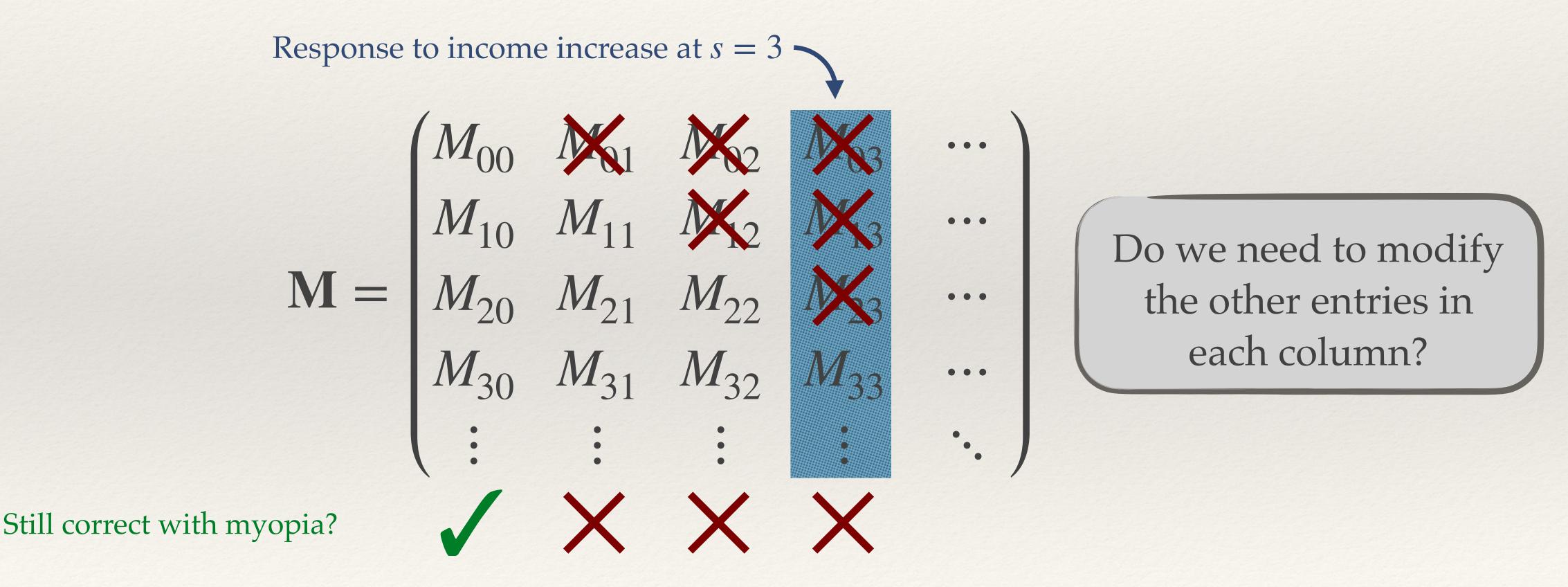
$$\mathbf{M}^r \equiv \frac{\partial \mathcal{C}}{\partial r}$$
 and $\mathbf{M} \equiv \frac{\partial \mathcal{C}}{\partial Y}$ are Jacobians of some household side (HA, RA, ZL...)

- * Imagine households are myopic:
 - * only start responding to dr_t^{ante} at date t
 - * only start responding to dY_t at date t
- * What is dY in this case?









$$\mathbf{M} = \begin{pmatrix} M_{00} & 0 & M_{02} & M_{03} & \cdots \\ M_{10} & M_{00} & M_{12} & M_{13} & \cdots \\ M_{20} & M_{10} & M_{22} & M_{23} & \cdots \\ M_{30} & M_{20} & M_{32} & M_{33} & \cdots \\ \vdots & \vdots & \vdots & \ddots \end{pmatrix}$$

$$\mathbf{M} = \begin{pmatrix} M_{00} & 0 & 0 & M_{03} & \cdots \\ M_{10} & M_{00} & 0 & M_{13} & \cdots \\ M_{20} & M_{10} & M_{00} & M_{23} & \cdots \\ M_{30} & M_{20} & M_{10} & M_{33} & \cdots \\ \vdots & \vdots & \vdots & \ddots \end{pmatrix}$$

* Take the intertemporal MPC matrix ... Is it still correct with myopia?

$$\mathbf{M} = \begin{pmatrix} M_{00} & 0 & 0 & 0 & \cdots \\ M_{10} & M_{00} & 0 & 0 & \cdots \\ M_{20} & M_{10} & M_{00} & 0 & \cdots \\ M_{30} & M_{20} & M_{10} & M_{00} & \cdots \\ \vdots & \vdots & \vdots & \vdots & \ddots \end{pmatrix}$$

After date s, $M_{t,s}$ is just like the date t-s response to an unanticipated shock!

Expectations matrix

- * Another way to look at this: What are expectations about a date-s shock?
- * Define matrix **E** that in column *s* has the expectations about date-*s* shock of 1

$$\mathbf{E} = \begin{pmatrix} 1 & 1 & 1 & 1 & \cdots \\ 1 & 1 & 1 & 1 & \cdots \\ 1 & 1 & 1 & 1 & \cdots \\ 1 & 1 & 1 & 1 & \cdots \\ \vdots & \vdots & \vdots & \vdots & \ddots \end{pmatrix} \sim \mathbf{E} = \begin{pmatrix} 1 & 0 & 0 & 0 & \cdots \\ 1 & 1 & 0 & 0 & \cdots \\ 1 & 1 & 1 & 0 & \cdots \\ 1 & 1 & 1 & 1 & \cdots \\ \vdots & \vdots & \vdots & \vdots & \ddots \end{pmatrix}$$

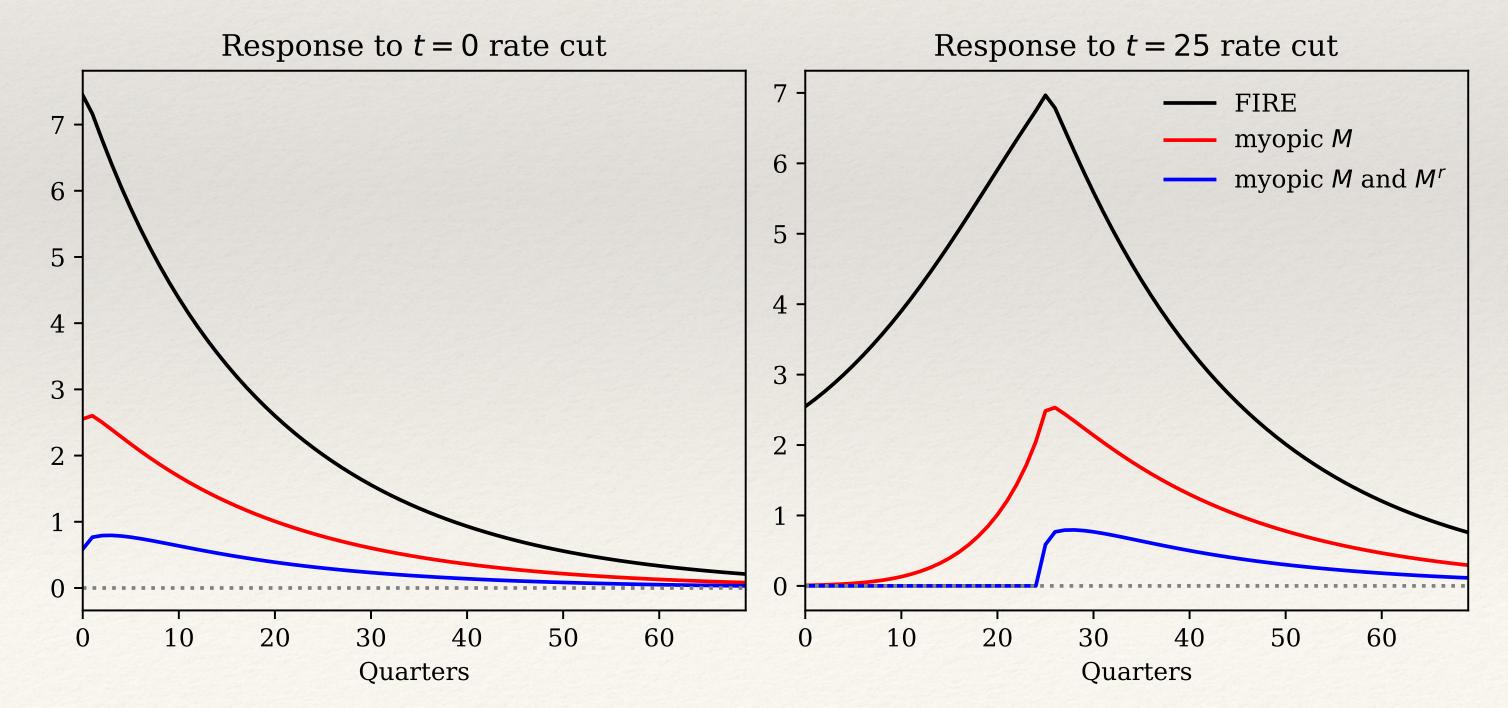
* $E_{t,s}dY_s$ is then the expected value of dY_s at date t.

Solving the myopic IKC

* How can we solve for the GE response of dY then?

$$d\mathbf{Y} = \mathbf{M}^r d\mathbf{r}^{ante} + \mathbf{M} d\mathbf{Y}$$

* With zero new computational burden, we can solve our myopic economy!



Solving myopic IKC for fiscal policy

- * Another application: Imagine we want to solve for fiscal multipliers but agents expect neither future taxes nor future income.
- * What's the right IKC?

$$d\mathbf{Y} = d\mathbf{G} - \mathbf{M}d\mathbf{T} + \mathbf{M}d\mathbf{Y}$$

* Next: Generalize this to more general models of belief formation!

Two general assumptions we'll make

- * We will make two implicit assumptions
- * Agents are only "behavioral" about future changes in aggregate variables
 - * steady state unaffected
 - * not behavioral w.r.t. idiosyncratic income process
- * Deviations from FIRE are orthogonal to idiosyncratic state
 - * can relax, but too much today. See Guerreiro (2022).

Information frictions in the sequence space

General expectations matrix

- * Consider a general $\mathbf{E} = (E_{t,s})$ matrix ...
 - * entry $E_{t,s}$ captures the date-t expectation of a unit shock at date s
 - * $E_{t,s}dY_s$ is the date-t expectation of a shock dY_s at date s
- * For today, make one of two assumptions (very common!)
 - * agents have correct expectations about the shock by the time it hits
 - * Jacobian M is such that knowledge of past shocks does not alter behavior

Typical example

$$\mathbf{E} = \begin{pmatrix} 1 & * & * & * & \dots \\ 1 & 1 & * & * & \dots \\ 1 & 1 & 1 & * & \dots \\ 1 & 1 & 1 & 1 & \dots \\ \vdots & \vdots & \vdots & \vdots & \ddots \end{pmatrix}$$

Typical example

Like a news shock at date 1, that one period later dY goes up by 0.3

$$\mathbf{E} = \begin{pmatrix} 1 & 0.4 & 0.3 & 0.2 & \cdots \\ 1 & 1 & 0.6 & 0.4 & \cdots \\ 1 & 1 & 1 & 0.8 & \cdots \\ 1 & 1 & 1 & 1 & \cdots \\ \vdots & \vdots & \vdots & \ddots \end{pmatrix}$$

Typical example

Like a news shock at date 1, that two periods later dY goes up by 0.2

$$\mathbf{E} = \begin{pmatrix} 1 & 0.4 & 0.3 & 0.2 & \cdots \\ 1 & 1 & 0.6 & 0.4 & \cdots \\ 1 & 1 & 1 & 0.8 & \cdots \\ 1 & 1 & 1 & 1 & \cdots \\ \vdots & \vdots & \vdots & \ddots \end{pmatrix}$$

General Jacobian manipulation

- * Given E and FIRE Jacobian M, how do we come up with M?
- * Consider unit shock at date s. What is the response?
- * At date τ , expectation shifts by $E_{\tau,s} E_{\tau-1,s}$
 - * This is like a news shock with $s \tau$ away!

$$M_{t,s} = \sum_{\tau=0}^{\min\{t,s\}} (E_{\tau,s} - E_{\tau-1,s}) \cdot M_{t-\tau,s-\tau}$$

date-*t* effect of a date-*τ* expectation revision about date-*s* shock

Examples

(1) Sticky information

- * Mankiw Reis (2002) propose an information-based microfoundation of nominal rigidities
- * Idea: a mass 1 of price setters would like to set their price equal to some markup over marginal cost

$$\log P_{it} = \log \mu + \log MC_t$$
 where MC_t is stochastic

- * Only random fraction 1θ of price setters receive latest information in any given period. ($\theta = 0$ is flexible prices)
- * This is called "sticky information".

(1) Nesting sticky information

- * What is the Jacobian of $\log P_t$ to $\log MC_t$ in the model?
- * With FIRE: M = I

$$\mathbf{E} = \begin{pmatrix} 1 - \theta & 1 - \theta & 1 - \theta & \cdots \\ 1 - \theta^2 & 1 - \theta^2 & 1 - \theta^2 & \cdots \\ 1 - \theta^3 & 1 - \theta^3 & 1 - \theta^3 & \cdots \\ \vdots & \vdots & \vdots & \ddots \end{pmatrix} \qquad \mathbf{M} = \begin{pmatrix} 1 - \theta & 0 & 0 & \cdots \\ 0 & 1 - \theta^2 & 0 & \cdots \\ 0 & 0 & 1 - \theta^3 & \cdots \\ \vdots & \vdots & \vdots & \ddots \end{pmatrix}$$

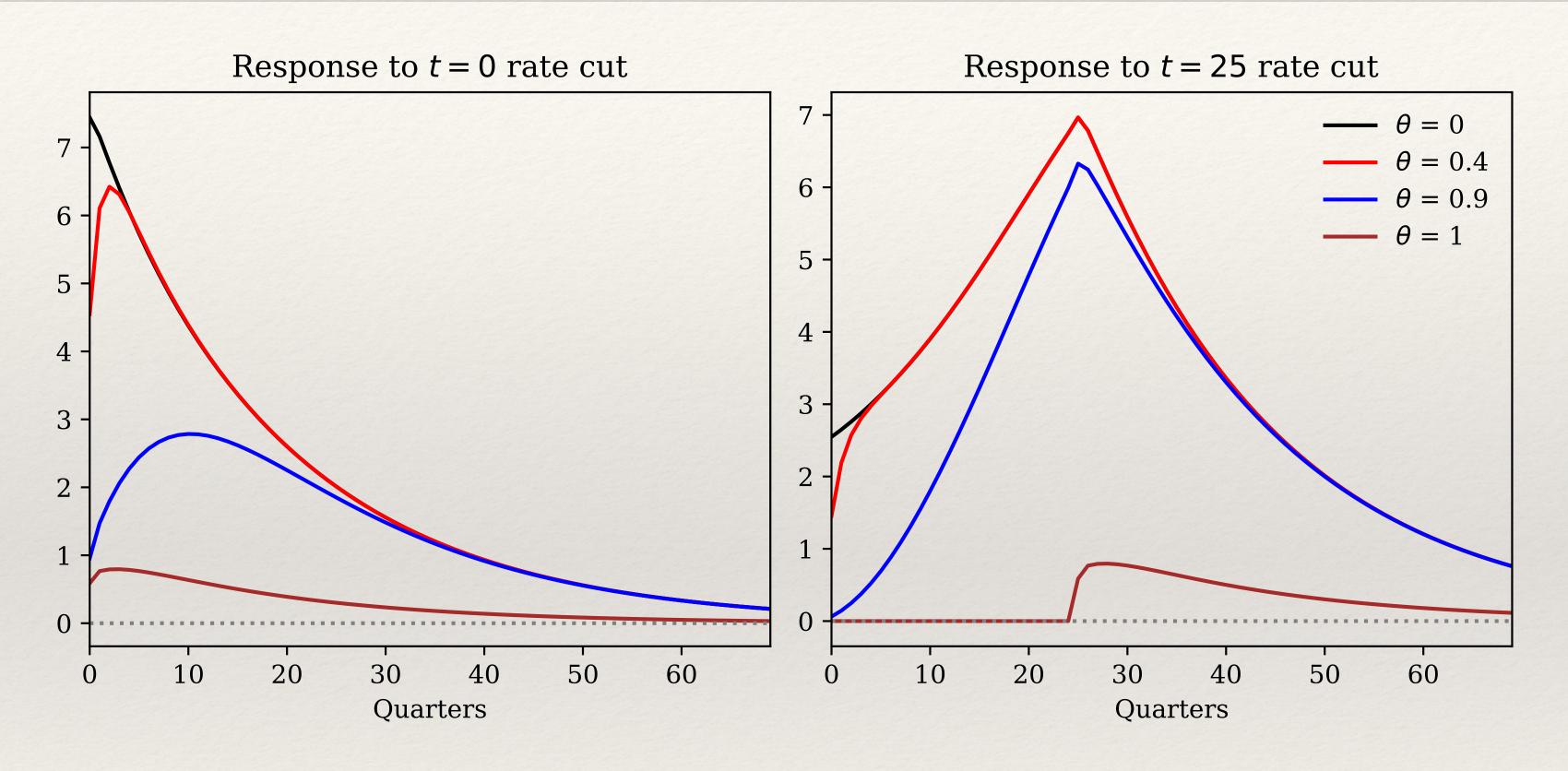
(2) Sticky expectations

- * Sticky info works well if past shocks don't influence behavior
 - * Not true for HA models!
- * Carroll et al (2020) workaround: Assume everyone learns when shock hits!

$$\mathbf{E} = \begin{pmatrix} 1 & 1 - \theta & 1 - \theta & \cdots \\ 1 & 1 & 1 - \theta^2 & \cdots \\ 1 & 1 & 1 & \cdots \\ \vdots & \vdots & \ddots \end{pmatrix}$$

$$\mathbf{E} = \begin{pmatrix} 1 & 1 - \theta & 1 - \theta & \cdots \\ 1 & 1 & 1 - \theta^2 & \cdots \\ 1 & 1 & 1 & \cdots \\ \vdots & \vdots & \vdots & \ddots \end{pmatrix} \qquad \mathbf{M} = \begin{pmatrix} M_{00} & (1 - \theta)M_{01} & (1 - \theta)M_{02} & \cdots \\ M_{10} & (1 - \theta)M_{11} + \theta M_{00} & (1 - \theta)M_{12} + \theta (1 - \theta)M_{01} & \cdots \\ M_{20} & (1 - \theta)M_{21} + \theta M_{10} & \vdots & \cdots \\ \vdots & \vdots & \vdots & \ddots \end{pmatrix}$$

(2) HANK with sticky expectations



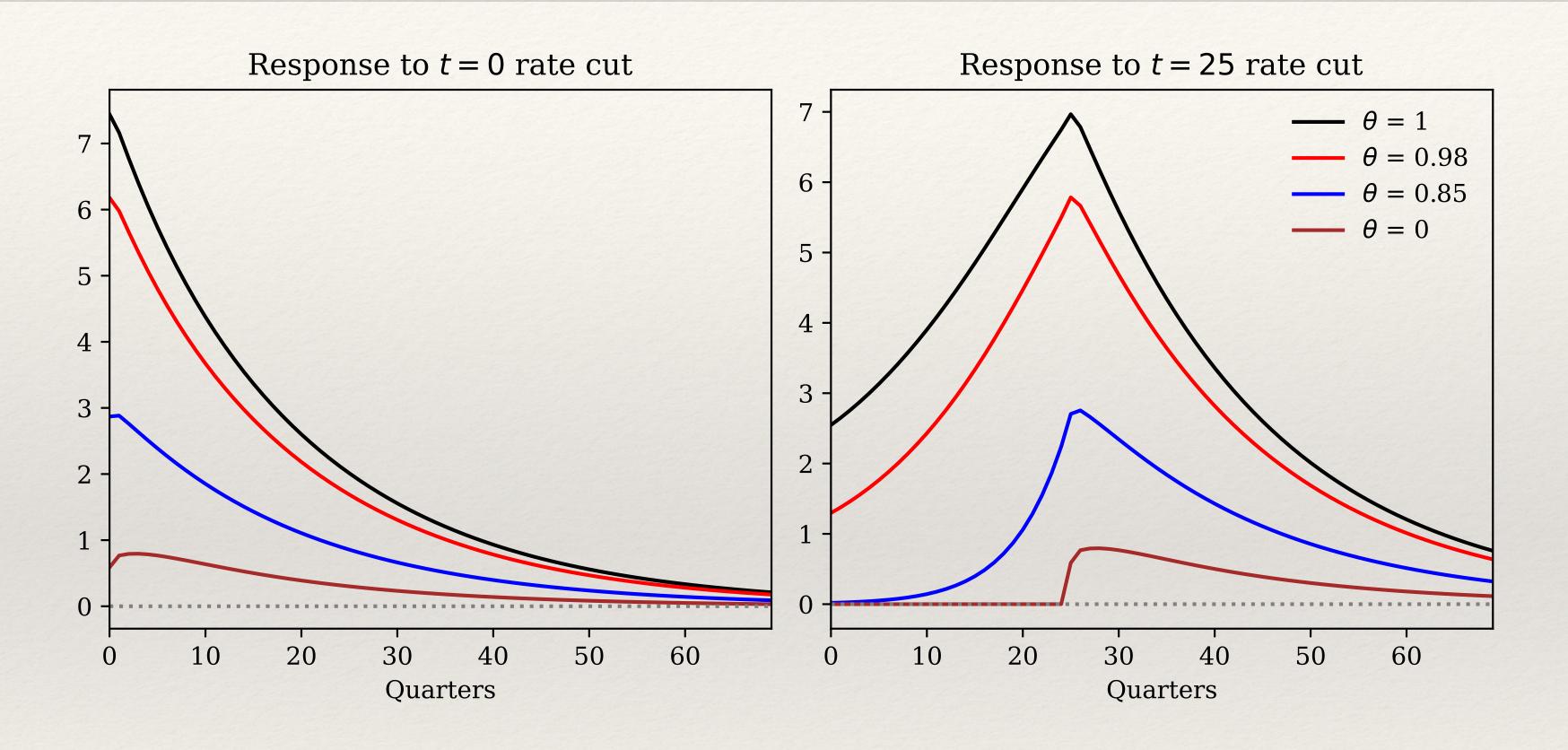
- * Intermediate θ generates strong hump shape
- * Nice way to replace habit and other slow-adjustment frictions in DSGE models

(3) Cognitive discounting

- * Gabaix (2020) introduces cognitive discounting
- * Idea: Agents respond to shock in h periods as if shock size is dampened by θ^h
 - * this is as if agents expect shock size θ^h , instead of 1

$$\mathbf{E} = \begin{pmatrix} 1 & \theta & \theta^2 & \theta^3 & \cdots \\ 1 & 1 & \theta & \theta^2 & \cdots \\ 1 & 1 & 1 & \theta & \cdots \\ 1 & 1 & 1 & \cdots \\ \vdots & \vdots & \vdots & \vdots & \ddots \end{pmatrix}$$
* Here, dampening relative to *diagonal*
* \neq sticky info, where dampening relative to *initial period*
* relative to *initial period*

(3) HANK with cognitive discounting



* Doesn't generate humps so well, but dampens forward guidance!

(4) Level-k thinking

- * Farhi Werning (2019) is first paper to combine HANK with deviations from FIRE
- * They use level-k thinking:
 - * k = 1: all agents believe output is at steady state
 - * k = 2: all agents believe all other agents are at level k = 1
 - * k = 3: all agents believe all other agents are at level k = 2, ... etc

(4) Level-1 thinking

* Level k = 1 very close to our myopic example:

$$\mathbf{M}^{(1)} = \begin{pmatrix} M_{00} & 0 & 0 & 0 & \cdots \\ M_{10} & M_{00} & 0 & 0 & \cdots \\ M_{20} & M_{10} & M_{00} & 0 & \cdots \\ M_{30} & M_{20} & M_{10} & M_{00} & \cdots \\ \vdots & \vdots & \vdots & \vdots & \ddots \end{pmatrix}$$

$$d\mathbf{Y}^{(1)} = \mathbf{M}^r d\mathbf{r} + \mathbf{M}^{(1)} \cdot d\mathbf{Y}^{(1)}$$

(4) Level-2 thinking

* What about level-2?

$$d\mathbf{Y}^{(2)} = \mathbf{M}^r d\mathbf{r} + \mathbf{M} \cdot d\mathbf{Y}^{(1)}$$

spend money according to level-1! Hence everyone expects income = $d\mathbf{Y}^{(1)}$

Everybody expects everyone else to

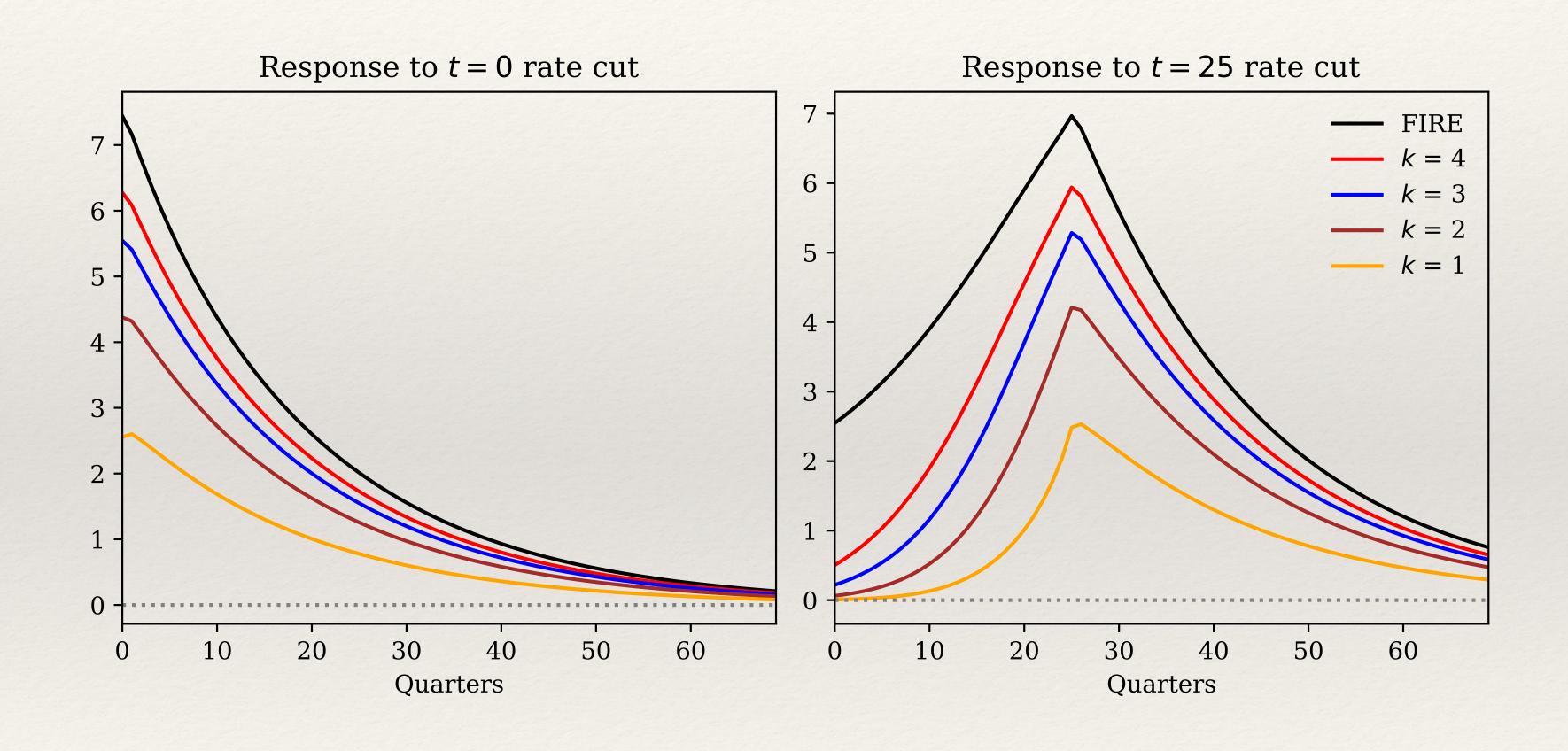
$$+\mathbf{M}^{(1)} \cdot (d\mathbf{Y}^{(2)} - d\mathbf{Y}^{(1)})$$

... but actual income is $d\mathbf{Y}^{(2)}$!

Agents are constantly surprised when actual income $d\mathbf{Y}^{(2)}$ differs from $d\mathbf{Y}^{(1)}$

General recursion: $d\mathbf{Y}^{(k+1)} = \mathbf{M}^r d\mathbf{r} + \mathbf{M} \cdot d\mathbf{Y}^{(k)} + \mathbf{M}^{(1)} \cdot \left(d\mathbf{Y}^{(k+1)} - d\mathbf{Y}^{(k)} \right)$

(4) HANK with level k



Takeaway

Conclusion

* Information rigidities can be nested quite nicely in the sequence space

- * Not just gives us a straightforward way of simulating them for RA models,
 - * but allows us to apply it to HA models equally well!