Fiscal Policy

Goethe Heterogeneous-Agent Macro Workshop

Ludwig Straub

June 2024

This session

We just introduced the canonical HANK model.

Next: Focus on fiscal policy!

- Switch off all other shocks: TFP $X_t = 1$, no monetary shock $r_t = r = const$
- Focus on **first order** shocks to fiscal policy: $d\mathbf{G} = \{dG_t\}, d\mathbf{T} = \{dT_t\}$ such that

$$\sum_{t=0}^{\infty} (1+r)^{-t} (dG_t - dT_t) = 0$$

• Main reference for this class is Auclert et al. (2024)

2

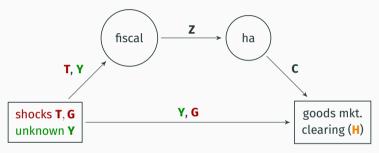
Roadmap

- 1 The intertemporal Keynesian cross
- 2 Three special cases
- 3 iMPCs in the HA model
- Insights about Fiscal Multipliers
- **5** Takeaway

The intertemporal Keynesian cross

DAG for the economy with only fiscal shocks

Switching off monetary shocks, the DAG is simply:



In this case, $\mathbf{H} = \mathbf{o}$ simply corresponds to:

$$\mathbf{Y} = \mathbf{G} + \mathcal{C}(\mathbf{Z})$$

To emphasize that ${\bf C}$ is a function, write it as ${\cal C}$. ${\bf C}$ only a function of ${\bf Z}$ here!

Next: Analyze this equation "by hand"...

The aggregate consumption function

ullet We call ${\mathcal C}$ the **aggregate consumption function**

$$C_{t}=\mathcal{C}_{t}\left(Z_{o},Z_{1},Z_{2},\ldots\right)=\mathcal{C}_{t}\left(\left\{ Z_{s}\right\} \right)$$

It's a collection of ∞ many nonlinear functions of ∞ many Z's!

- It usually also depends on the path of real interest rates, but those are assumed to be constant
- ullet Using the DAG, we can substitute out Z and write goods market clearing as

$$\mathbf{Y}_{t} = \mathbf{G}_{t} + \mathcal{C}_{t} \left(\left\{ \mathbf{Y}_{s} - \mathbf{T}_{s} \right\} \right)$$

$$Y_t = G_t + C_t \left(\left\{ Y_s - T_s \right\} \right)$$

• Feed in small shock $\{dG_t, dT_t\}$

$$dY_{t} = dG_{t} + \sum_{s=0}^{\infty} \frac{\partial C_{t}}{\partial Z_{s}} \cdot (dY_{s} - dT_{s})$$
 (1)

$$Y_t = G_t + C_t \left(\left\{ Y_s - T_s \right\} \right)$$

• Feed in small shock $\{dG_t, dT_t\}$

$$dY_t = dG_t + \sum_{s=0}^{\infty} \frac{\partial C_t}{\partial Z_s} \cdot (dY_s - dT_s)$$
 (1)

• Response dY_t entirely characterized by the Jacobian of C function, which we also call intertemporal MPCs

$$M_{t,s} \equiv rac{\partial \mathcal{C}_t}{\partial Z_s} \qquad \left(=\mathcal{J}_{t,s}^{ extsf{c,z}}
ight)$$

$$Y_t = G_t + C_t \left(\left\{ Y_s - T_s \right\} \right)$$

• Feed in small shock $\{dG_t, dT_t\}$

$$dY_t = dG_t + \sum_{s=0}^{\infty} \frac{\partial C_t}{\partial Z_s} \cdot (dY_s - dT_s)$$
 (1)

• Response dY_t entirely characterized by the Jacobian of C function, which we also call intertemporal MPCs

$$M_{t,s} \equiv rac{\partial \mathcal{C}_t}{\partial Z_s} \qquad \left(=\mathcal{J}_{t,s}^{ extbf{c,z}}
ight)$$

• $M_{t,s}$ = how much of an income change at date s is spent at date t

$$Y_{t} = G_{t} + \mathcal{C}_{t} \left(\left\{ Y_{s} - T_{s} \right\} \right)$$

• Feed in small shock $\{dG_t, dT_t\}$

$$dY_t = dG_t + \sum_{s=0}^{\infty} \frac{\partial C_t}{\partial Z_s} \cdot (dY_s - dT_s)$$
 (1)

• Response dY_t entirely characterized by the Jacobian of $\mathcal C$ function, which we also call intertemporal MPCs

$$\textbf{M}_{t,s} \equiv \frac{\partial \mathcal{C}_t}{\partial \textbf{Z}_s} \qquad \left(= \mathcal{J}_{t,s}^{\textbf{C},\textbf{Z}} \right)$$

- $M_{t,s}$ = how much of an income change at date s is spent at date t
- Note: All income is spent at some point, hence $\sum_{t=0}^{\infty} (1+r)^{s-t} M_{t,s} = 1$

The intertemporal Keynesian cross

• Rewrite equation (1) in vector / matrix notation:

$$d\mathbf{Y} = d\mathbf{G} - \mathbf{M}d\mathbf{T} + \mathbf{M}d\mathbf{Y} \tag{2}$$

ullet This equation exactly corresponds to $d{f H}={f O}$

The intertemporal Keynesian cross

• Rewrite equation (1) in vector / matrix notation:

$$d\mathbf{Y} = d\mathbf{G} - \mathbf{M}d\mathbf{T} + \mathbf{M}d\mathbf{Y} \tag{2}$$

- This equation exactly corresponds to $d\mathbf{H} = \mathbf{0}$
- This is an intertemporal Keynesian cross
 - entire complexity of model is in M
 - with M from data, could get dY without model!
 (there is a "correct" M out there, but it's very hard to measure...)

Connecting to the standard Keynesian cross...

ullet Standard IS-LM theory postulates $C_t=\mathcal{C}\left(Y_t-T_t
ight)$ plus market clearing, so

$$Y_{t}=G_{t}+\mathcal{C}\left(Y_{t}-T_{t}\right)$$

Differentiate around steady state with constant *Y*, *T*, *G*:

$$dY_t = dG_t - mpc \cdot dT_t + mpc \cdot dY_t$$

where mpc = C'(Y - T). This is the **static Keynesian cross**.

Connecting to the standard Keynesian cross...

ullet Standard IS-LM theory postulates $C_t=\mathcal{C}\left(Y_t-T_t
ight)$ plus market clearing, so

$$Y_t = G_t + \mathcal{C}\left(Y_t - T_t\right)$$

Differentiate around steady state with constant Y, T, G:

$$dY_t = dG_t - mpc \cdot dT_t + mpc \cdot dY_t$$

where mpc = C'(Y - T). This is the **static Keynesian cross**.

- The intertemporal Keynesian cross is a vector-valued version of this
- HANK models tend to revive & microfound IS-LM logic

• How can we solve (2)? Rewrite as

$$(\mathbf{I} - \mathbf{M}) \, d\mathbf{Y} = d\mathbf{G} - \mathbf{M} d\mathbf{T} \tag{3}$$

• Standard Keynesian cross solution:

$$dY_t = \frac{dG_t - mpc \cdot dT_t}{1 - mpc}$$

Can we do the same, inverting (I - M)?

• How can we solve (2)? Rewrite as

$$(\mathbf{I} - \mathbf{M}) \, d\mathbf{Y} = d\mathbf{G} - \mathbf{M} d\mathbf{T} \tag{3}$$

• Standard Keynesian cross solution:

$$dY_t = \frac{dG_t - mpc \cdot dT_t}{1 - mpc}$$

Can we do the same, inverting (I - M)? Not so fast!

• Why? Multiply both sides of (3) by: $\mathbf{q} \equiv (1, (1+r)^{-1}, (1+r)^{-2}, ...)'$

$$\mathbf{q}'(\mathbf{I} - \mathbf{M}) d\mathbf{Y} = \mathbf{0}$$

• How can we solve (2)? Rewrite as

$$(\mathbf{I} - \mathbf{M}) \, d\mathbf{Y} = d\mathbf{G} - \mathbf{M} d\mathbf{T} \tag{3}$$

Standard Keynesian cross solution:

$$dY_t = \frac{dG_t - mpc \cdot dT_t}{1 - mpc}$$

Can we do the same, inverting (I - M)? Not so fast!

• Why? Multiply both sides of (3) by: $\mathbf{q} \equiv (1, (1+r)^{-1}, (1+r)^{-2}, ...)'$

$$\mathbf{q}'(\mathbf{I} - \mathbf{M}) d\mathbf{Y} = \mathbf{0}$$
 $\mathbf{q}' d\mathbf{G} - \mathbf{q}' \mathbf{M} d\mathbf{T} = \mathbf{q}' d\mathbf{G} - \mathbf{q}' d\mathbf{T} = \mathbf{0}$

both left and right hand side have "zero NPV"!

• How can we solve (2)? Rewrite as

$$(\mathbf{I} - \mathbf{M}) \, d\mathbf{Y} = d\mathbf{G} - \mathbf{M} d\mathbf{T} \tag{3}$$

Standard Keynesian cross solution:

$$dY_t = \frac{dG_t - mpc \cdot dT_t}{1 - mpc}$$

Can we do the same, inverting (I - M)? Not so fast!

• Why? Multiply both sides of (3) by: $\mathbf{q} \equiv (1, (1+r)^{-1}, (1+r)^{-2}, ...)'$

$$\mathbf{q}'(\mathbf{I} - \mathbf{M}) d\mathbf{Y} = \mathbf{0}$$
 $\mathbf{q}' d\mathbf{G} - \mathbf{q}' \mathbf{M} d\mathbf{T} = \mathbf{q}' d\mathbf{G} - \mathbf{q}' d\mathbf{T} = \mathbf{0}$

both left and right hand side have "zero NPV"!

• Intuition: present value of mpc is 1, dY is 0/0... What to do?

- So how can we solve the IKC? Just like with L'Hospital, we want to modify both numerator and denominator to avoid o/o issue ...
- Do this by pre-multiplying with a matrix K

$$K(I - M) dY = K(dG - MdT)$$

• Now for a clever choice of K, K(I - M) may be invertible:

- So how can we solve the IKC? Just like with L'Hospital, we want to modify both numerator and denominator to avoid o/o issue ...
- Do this by pre-multiplying with a matrix K

$$K(I - M) dY = K(dG - MdT)$$

• Now for a clever choice of K, K(I - M) may be invertible:

Theorem

There exists a unique solution to the IKC for any $d\mathbf{G}$, $d\mathbf{T}$ satisfying $\mathbf{q}'d\mathbf{G} = \mathbf{q}'d\mathbf{T}$, iff $\mathbf{K}(\mathbf{I} - \mathbf{M})$ is invertible. Then, the solution is:

$$d\mathbf{Y} = \mathcal{M} \left(d\mathbf{G} - \mathbf{M} d\mathbf{T} \right)$$

where $\mathcal{M} \equiv (\mathbf{K}(\mathbf{I} - \mathbf{M}))^{-1}\mathbf{K}$ is a bounded linear operator ("multiplier")

Which **K** are we using?

- Which **K** is needed?
- One natural choice:

$$\mathbf{K} = -\begin{pmatrix} 0 & (1+r)^{-1} & (1+r)^{-2} & (1+r)^{-3} & \cdots \\ 0 & 0 & (1+r)^{-1} & (1+r)^{-2} & \ddots \\ 0 & 0 & 0 & (1+r)^{-1} & \ddots \\ 0 & 0 & 0 & 0 & \ddots \\ \vdots & \ddots & \ddots & \ddots & \ddots \end{pmatrix} = -\sum_{t=1}^{\infty} (1+r)^{-t} \mathbf{F}^{t}$$

where **F** is forward operator matrix.

- Then: K(I M) is the "asset jacobian" of the household block.
- When is K(I M) invertible? \rightarrow see Auclert et al. (2023) for a criterion.

The balanced budget multiplier

• Suppose $d\mathbf{G} = d\mathbf{T}$ (balanced budget)

The balanced budget multiplier

- Suppose $d\mathbf{G} = d\mathbf{T}$ (balanced budget)
- **Result**: We always have $d\mathbf{Y} = d\mathbf{G}$!
- Irrespective of all household heterogeneity, holds for any path of spending
- IS-LM antecedents: Gelting (1941), Haavelmo (1945)

The balanced budget multiplier

- Suppose dG = dT (balanced budget)
- **Result**: We always have $d\mathbf{Y} = d\mathbf{G}$!
- Irrespective of all household heterogeneity, holds for any path of spending
- IS-LM antecedents: Gelting (1941), Haavelmo (1945)
- Proof is trivial: $d\mathbf{Y} = d\mathbf{G}$ is unique solution to

$$d\mathbf{Y} = (I - \mathbf{M}) \cdot d\mathbf{G} + \mathbf{M} \cdot d\mathbf{Y}$$

Deficit financed fiscal policy

• With deficit financing $d\mathbf{G} \neq d\mathbf{T}$ we have

$$d\mathbf{Y} = d\mathbf{G} + \underbrace{\mathcal{M} \cdot \mathbf{M} \cdot (d\mathbf{G} - d\mathbf{T})}_{d\mathbf{C}}$$

Consumption $d\mathbf{C}$ depends on **primary deficits** $d\mathbf{G} - d\mathbf{T}$

Deficit financed fiscal policy

• With deficit financing $d\mathbf{G} \neq d\mathbf{T}$ we have

$$d\mathbf{Y} = d\mathbf{G} + \underbrace{\mathcal{M} \cdot \mathbf{M} \cdot (d\mathbf{G} - d\mathbf{T})}_{d\mathbf{C}}$$

Consumption $d\mathbf{C}$ depends on **primary deficits** $d\mathbf{G} - d\mathbf{T}$

• Interaction term: Deficits matter precisely when **M** is "large" (which will mean very different from RA model)

Deficit financed fiscal policy

• With deficit financing $d\mathbf{G} \neq d\mathbf{T}$ we have

$$d\mathbf{Y} = d\mathbf{G} + \underbrace{\mathcal{M} \cdot \mathbf{M} \cdot (d\mathbf{G} - d\mathbf{T})}_{d\mathbf{C}}$$

Consumption $d\mathbf{C}$ depends on **primary deficits** $d\mathbf{G} - d\mathbf{T}$

- Interaction term: Deficits matter precisely when M is "large" (which will mean very different from RA model)
- Next: Go over our three examples and then compare multipliers to full HA model
- Define:
 - initial multiplier: $dY_{\rm o}/dG_{\rm o}$
 - cumulative multiplier: $\frac{\sum (1+r)^{-t} dY_t}{\sum (1+r)^{-t} dG_t}$

- Very simple to incorporate automatic stabilizers into our analysis (Angeletos et al., 2023)
- Imagine $d\mathbf{G}$ shock but we **keep tax rate** τ **is constant.** Now, $d\mathbf{T} = \tau d\mathbf{Y}$
- What happens?

- Very simple to incorporate automatic stabilizers into our analysis (Angeletos et al., 2023)
- Imagine $d\mathbf{G}$ shock but we **keep tax rate** τ **is constant.** Now, $d\mathbf{T} = \tau d\mathbf{Y}$
- What happens?

$$d\mathbf{Y} = d\mathbf{G} - \mathbf{M} \underbrace{\tau d\mathbf{Y}}_{d\mathbf{T}} + \mathbf{M} d\mathbf{Y}$$

- Very simple to incorporate automatic stabilizers into our analysis (Angeletos et al., 2023)
- Imagine $d\mathbf{G}$ shock but we **keep tax rate** τ **is constant.** Now, $d\mathbf{T} = \tau d\mathbf{Y}$
- What happens?

$$d\mathbf{Y} = d\mathbf{G} - \mathbf{M}\underbrace{\tau d\mathbf{Y}}_{d\mathbf{T}} + \mathbf{M}d\mathbf{Y}$$

$$(\mathbf{I} - (\mathbf{1} - \tau) \,\mathbf{M}) \, d\mathbf{Y} = d\mathbf{G}$$

- Very simple to incorporate automatic stabilizers into our analysis (Angeletos et al., 2023)
- Imagine $d\mathbf{G}$ shock but we **keep tax rate** τ **is constant.** Now, $d\mathbf{T} = \tau d\mathbf{Y}$
- What happens?

$$\begin{aligned} d\mathbf{Y} &= d\mathbf{G} - \mathbf{M}\underbrace{\tau d\mathbf{Y}}_{d\mathbf{T}} + \mathbf{M} d\mathbf{Y} \\ (\mathbf{I} - (\mathbf{1} - \tau) \, \mathbf{M}) \, d\mathbf{Y} &= d\mathbf{G} \quad \Rightarrow \quad d\mathbf{Y} = (\mathbf{I} - (\mathbf{1} - \tau) \, \mathbf{M})^{-1} \, d\mathbf{G} \end{aligned}$$

Now, LHS is in fact invertible!

- Very simple to incorporate automatic stabilizers into our analysis (Angeletos et al., 2023)
- Imagine $d\mathbf{G}$ shock but we **keep tax rate** τ **is constant.** Now, $d\mathbf{T} = \tau d\mathbf{Y}$
- What happens?

$$\begin{aligned} d\mathbf{Y} &= d\mathbf{G} - \mathbf{M}\underbrace{\tau d\mathbf{Y}}_{d\mathbf{T}} + \mathbf{M} d\mathbf{Y} \\ (\mathbf{I} - (\mathbf{1} - \tau) \, \mathbf{M}) \, d\mathbf{Y} &= d\mathbf{G} \quad \Rightarrow \quad d\mathbf{Y} = (\mathbf{I} - (\mathbf{1} - \tau) \, \mathbf{M})^{-1} \, d\mathbf{G} \end{aligned}$$

Now, LHS is in fact invertible!

- Government doesn't have to actively raise tax rates to finance dG...
 - can just let the boom dY raise tax revenue endogenously!

Three special cases

Representative-agent model

Let's get an intuition for all this in the RA model. Last lecture we derived consumption function for RA model when $\beta(1+r)=1$

$$C_t = (1 - \beta) \sum_{s \ge 0} \beta^s Z_s + ra_{-1}$$

Representative-agent model

Let's get an intuition for all this in the RA model. Last lecture we derived consumption function for RA model when $\beta(1+r)=1$

$$C_t = (1 - \beta) \sum_{s \ge o} \beta^s Z_s + ra_{-1}$$

In particular

$$M_{t,s} = \frac{\partial C_t}{\partial Z_s} = (1 - \beta)\beta^s$$

Representative-agent model

Let's get an intuition for all this in the RA model. Last lecture we derived consumption function for RA model when $\beta(1+r)=1$

$$C_t = (1 - \beta) \sum_{s \ge o} \beta^s Z_s + ra_{-1}$$

In particular

$$M_{t,s} = \frac{\partial C_t}{\partial Z_s} = (1 - \beta)\beta^s$$

Thus iMPC matrix is given by

$$\mathbf{M}^{\mathsf{RA}} = \begin{pmatrix} 1 - \beta & (1 - \beta)\beta & (1 - \beta)\beta^2 & \cdots \\ 1 - \beta & (1 - \beta)\beta & (1 - \beta)\beta^2 & \cdots \\ 1 - \beta & (1 - \beta)\beta & (1 - \beta)\beta^2 & \cdots \\ \vdots & \vdots & \vdots & \ddots \end{pmatrix} = \frac{\mathbf{1q'}}{\mathbf{1'q}}$$

Representative-agent model

Let's get an intuition for all this in the RA model. Last lecture we derived consumption function for RA model when $\beta(1+r)=1$

$$C_t = (1 - \beta) \sum_{s > o} \beta^s Z_s + ra_{-1}$$

In particular

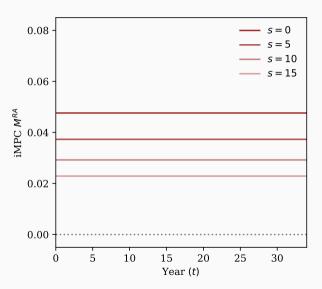
$$M_{t,s} = \frac{\partial C_t}{\partial Z_s} = (1 - \beta)\beta^s$$

Thus iMPC matrix is given by

$$\mathbf{M}^{RA} = \begin{pmatrix} 1 - \beta & (1 - \beta)\beta & (1 - \beta)\beta^2 & \cdots \\ 1 - \beta & (1 - \beta)\beta & (1 - \beta)\beta^2 & \cdots \\ 1 - \beta & (1 - \beta)\beta & (1 - \beta)\beta^2 & \cdots \\ \vdots & \vdots & \vdots & \ddots \end{pmatrix} = \frac{\mathbf{1q'}}{\mathbf{1'q}}$$

Easy to verify that $\mathbf{q}'\mathbf{M} = \mathbf{q}'$, and also that $\mathbf{M}\mathbf{w} = \mathbf{0}$ for any zero NPV \mathbf{w}

Representative-agent model



- Let's solve the IKC for the RA model
- Calculate:

$$egin{aligned} d\mathbf{C} &= \mathcal{M} \cdot \mathbf{M} \cdot (d\mathbf{G} - d\mathbf{T}) \ &= \mathcal{M} \cdot (\mathbf{1} - eta) \, \mathbf{1q}' \, (d\mathbf{G} - d\mathbf{T}) \end{aligned}$$

$$d\mathbf{Y} = d\mathbf{G}$$

- Let's solve the IKC for the RA model
- Calculate:

$$egin{aligned} d\mathbf{C} &= \mathcal{M} \cdot \mathbf{M} \cdot (d\mathbf{G} - d\mathbf{T}) \ &= \mathcal{M} \cdot (\mathbf{1} - eta) \, \mathbf{1q}' \, (d\mathbf{G} - d\mathbf{T}) \end{aligned}$$

$$d\mathbf{Y} = d\mathbf{G}$$

- Let's solve the IKC for the RA model
- Calculate:

$$egin{aligned} d\mathbf{C} &= \mathcal{M} \cdot \mathbf{M} \cdot (d\mathbf{G} - d\mathbf{T}) \ &= \mathcal{M} \cdot (\mathbf{1} - eta) \, \mathbf{1q}' \, (d\mathbf{G} - d\mathbf{T}) \end{aligned}$$

$$d\mathbf{Y} = d\mathbf{G}$$

- Let's solve the IKC for the RA model
- Calculate:

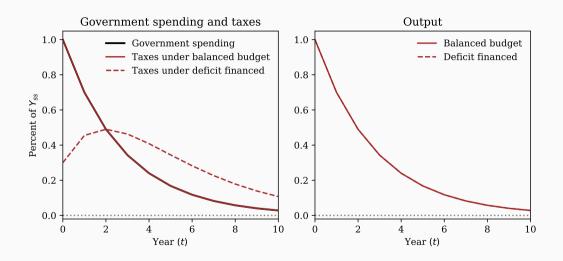
$$d\mathbf{C} = \mathcal{M} \cdot \mathbf{M} \cdot (d\mathbf{G} - d\mathbf{T})$$

= $\mathcal{M} \cdot (\mathbf{1} - \beta) \mathbf{1q}' (d\mathbf{G} - d\mathbf{T})$

$$d\mathbf{Y} = d\mathbf{G}$$

- Can prove this directly, too (eg Woodford 2011).
- Deficits are irrelevant in RA!

Impulse response to dG shock in RA model



Two agent model

• 1 $-\mu$ share of agents behave like RA agent, μ are hand to mouth \Rightarrow **M** matrix is simple linear combination

$$\mathbf{M}^{\mathsf{TA}} = (\mathbf{1} - \mu)\mathbf{M}^{\mathsf{RA}} + \mu\mathbf{I}$$

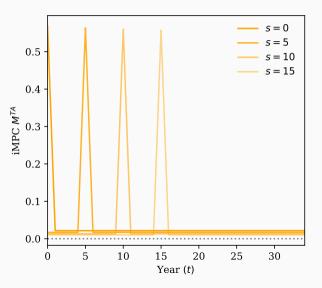
Two agent model

• 1 $-\mu$ share of agents behave like RA agent, μ are hand to mouth \Rightarrow **M** matrix is simple linear combination

$$\mathbf{M}^{\mathsf{TA}} = (\mathbf{1} - \mu)\mathbf{M}^{\mathsf{RA}} + \mu\mathbf{I}$$

• Issue: Only strong **contemporaneous** spending effect

iMPCs in TA model



• In Keynesian cross:

$$\left(\mathbf{I} - \mathbf{M}^{\mathsf{TA}}\right) d\mathbf{Y} = d\mathbf{G} - \mathbf{M}^{\mathsf{TA}} d\mathbf{T}$$

• In Keynesian cross:

$$\left(\mathbf{I} - \mathbf{M}^{\mathsf{TA}}\right) d\mathbf{Y} = d\mathbf{G} - \mathbf{M}^{\mathsf{TA}} d\mathbf{T} \quad \Leftrightarrow \quad \left(\mathbf{I} - \mathbf{M}^{\mathsf{RA}}\right) d\mathbf{Y} = \frac{1}{1 - \mu} \left[d\mathbf{G} - \mu d\mathbf{T} \right] - \mathbf{M}^{\mathsf{RA}} d\mathbf{T}$$

This equation has same shape as for RA, hence:

$$d\mathbf{Y} = rac{1}{1-\mu} \left[d\mathbf{G} - \mu d\mathbf{T}
ight]$$

• In Keynesian cross:

$$\left(\mathbf{I} - \mathbf{M}^{\mathsf{TA}}\right) d\mathbf{Y} = d\mathbf{G} - \mathbf{M}^{\mathsf{TA}} d\mathbf{T} \quad \Leftrightarrow \quad \left(\mathbf{I} - \mathbf{M}^{\mathsf{RA}}\right) d\mathbf{Y} = \frac{1}{1 - \mu} \left[d\mathbf{G} - \mu d\mathbf{T}\right] - \mathbf{M}^{\mathsf{RA}} d\mathbf{T}$$

This equation has same shape as for RA, hence:

$$d\mathbf{Y} = \frac{1}{1-\mu} \left[d\mathbf{G} - \mu d\mathbf{T} \right]$$

• Results from undergrad: Spending multiplier $1/(1-\mu)$ and transfer multiplier $\mu/(1-\mu)$. So: μ is "effective" MPC, ignoring RA

• In Keynesian cross:

$$\left(\mathbf{I} - \mathbf{M}^{\mathsf{TA}}\right) d\mathbf{Y} = d\mathbf{G} - \mathbf{M}^{\mathsf{TA}} d\mathbf{T} \quad \Leftrightarrow \quad \left(\mathbf{I} - \mathbf{M}^{\mathsf{RA}}\right) d\mathbf{Y} = \frac{1}{1 - \mu} \left[d\mathbf{G} - \mu d\mathbf{T}\right] - \mathbf{M}^{\mathsf{RA}} d\mathbf{T}$$

This equation has same shape as for RA, hence:

$$d\mathbf{Y} = \frac{1}{1-\mu} \left[d\mathbf{G} - \mu d\mathbf{T} \right]$$

- Results from undergrad: Spending multiplier $1/(1-\mu)$ and transfer multiplier $\mu/(1-\mu)$. So: μ is "effective" MPC, ignoring RA
- Can also write:

$$d\mathbf{Y} = d\mathbf{G} + \frac{\mu}{1-\mu} \underbrace{[d\mathbf{G} - d\mathbf{T}]}_{\text{primary deficit}}$$

• In Keynesian cross:

$$\left(\mathbf{I} - \mathbf{M}^{\mathsf{TA}}\right) d\mathbf{Y} = d\mathbf{G} - \mathbf{M}^{\mathsf{TA}} d\mathbf{T} \quad \Leftrightarrow \quad \left(\mathbf{I} - \mathbf{M}^{\mathsf{RA}}\right) d\mathbf{Y} = \frac{1}{1 - \mu} \left[d\mathbf{G} - \mu d\mathbf{T}\right] - \mathbf{M}^{\mathsf{RA}} d\mathbf{T}$$

This equation has same shape as for RA, hence:

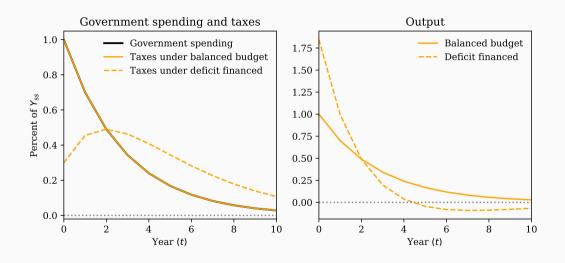
$$d\mathbf{Y} = \frac{1}{1-\mu} \left[d\mathbf{G} - \mu d\mathbf{T} \right]$$

- Results from undergrad: Spending multiplier $1/(1-\mu)$ and transfer multiplier $\mu/(1-\mu)$. So: μ is "effective" MPC, ignoring RA
- Can also write:

$$d\mathbf{Y} = d\mathbf{G} + \frac{\mu}{1-\mu} \underbrace{[d\mathbf{G} - d\mathbf{T}]}_{\text{primary deficit}}$$

• Only **current** deficit matters. Initial multiplier can be large $\in [1, \frac{1}{1-\mu}]$, but cumulative multiplier is always equal to 1!

Impulse response to dG shock in TA model

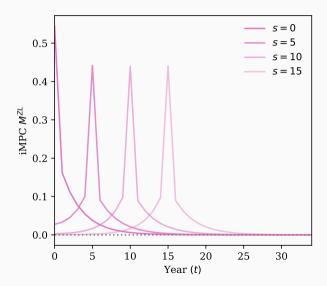


Zero-liquidity model

- What about iMPCs in the ZL model?
- We can calculate (see IKC paper)

$$\begin{aligned} M_{to}^{ZL} &= \mu \mathbf{1}_{t=0} + (\mathbf{1} - \mu) \left(\mathbf{1} - \frac{\lambda}{1+r} \right) \cdot \lambda^{t} \\ M_{os}^{ZL} &= (\mathbf{1} - \mu) \frac{\mathbf{1} - \beta \lambda}{\beta (\mathbf{1} + r)} \cdot (\beta \lambda)^{s} \end{aligned}$$

- Intuitively, it's a mix of a "constrained agent" with mass μ and agents that spend down assets at constant rate λ
 - Latter are also the iMPCs of a bond-in-utility model (and an OLG model!)
- Note, given known \emph{M}_{00} and \emph{M}_{10} , can solve for μ and λ



• Can solve above model explicitly

$$dY_t = \underbrace{\frac{1}{1-\mu}\left[dG_t - \mu dT_t\right]}_{\text{as in TA model}} + \underbrace{\frac{\beta\left(1+r\right)-1}{1-\mu}dB_t + \left(1+r\right)\frac{1-\beta\lambda}{1-\mu}\left(\frac{1}{\lambda}-1\right)\sum_{s=0}^{\infty}dB_{t+s}}_{\text{new terms}}$$

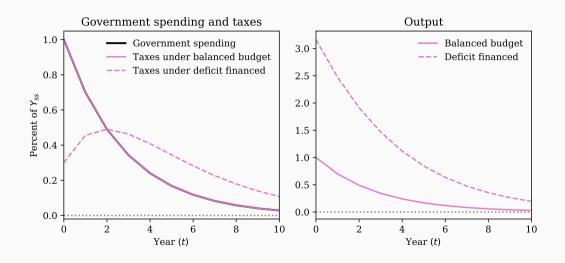
Future fiscal policy extremely powerful here.

- Why? Dynamic income-consumption feedback from "spending down" effect
- In particular, can show:

Theorem

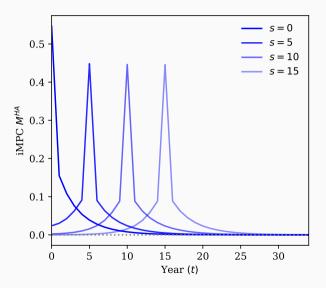
Holding β , r, and M_{00} fixed in the ZL model, a higher M_{10} increases the cumulative multiplier whenever d**B** \geq 0 and dB_t > 0 for some t.

Impulse response to dG shock in ZL model

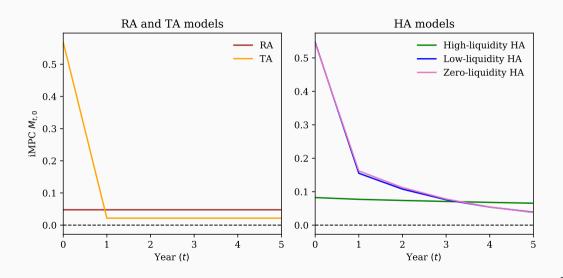


iMPCs in the HA model

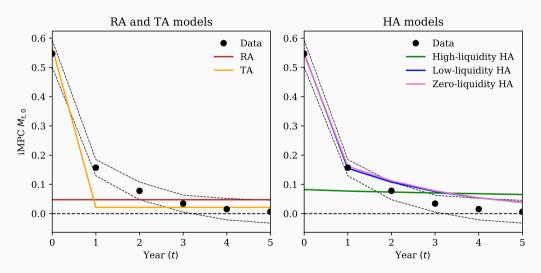
iMPCs in the HA model (computed using fake news algorithm)



Comparing iMPCs across models



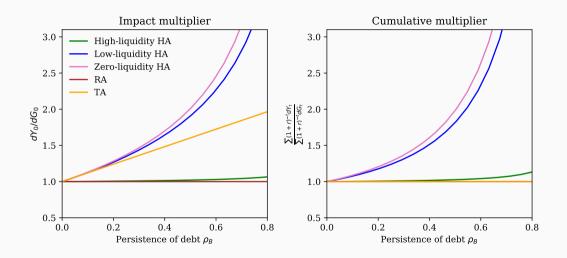
Comparison with the data



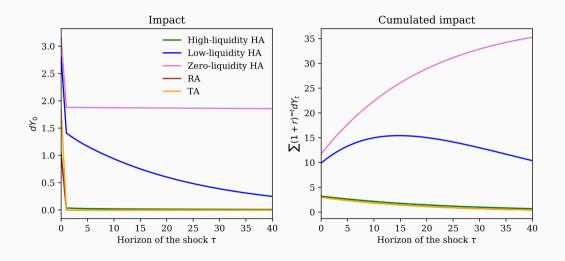
see Fagereng et al. (2021), estimating cons. response to lottery winnings

Insights about Fiscal Multipliers

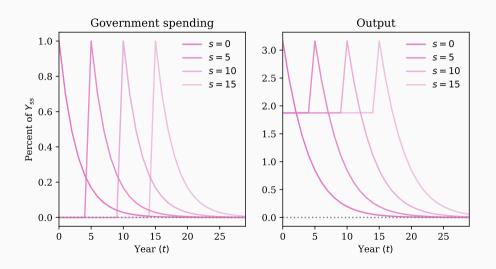
Fiscal stimulus more powerful when deficit financed



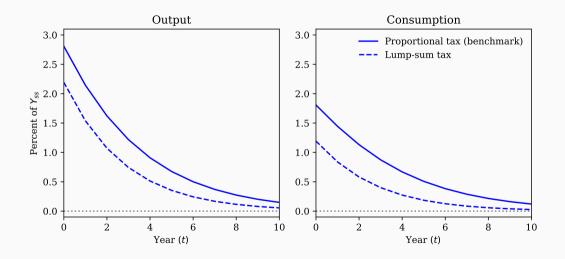
Fiscal policy is more powerful if front loaded...



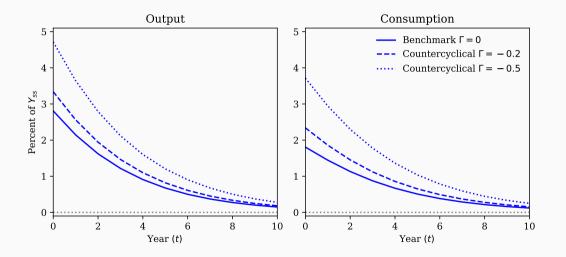
... but not in the zero-liquidity model (a fiscal policy forward guidance puzzle?)



Fiscal policy is less powerful if financed by lump-sum taxes (Why?)



Fiscal policy is more powerful if income risk is countercyclical (Why?)



 $\label{eq:local_problem} \textbf{Auclert-Rognlie "incidence function"}. \ \textbf{More negative } \Gamma \ \textbf{means incomes more dispersed in recessions, } \Pi \ \textbf{is fixed}.$

Takeaway

Fiscal policy in HANK

- First exploration of shocks & policies in HANK
- One key difference already emerged: in HANK, households have very different iMPCs
- This matters for fiscal policy:
 - deficit financing & front loading amplifies initial and cumulative multipliers
 - not the case in RA, and not even in TA

References

- Angeletos, G.-M., Lian, C., and Wolf, C. K. (2023). Can Deficits Finance Themselves? Working Paper 31185, National Bureau of Economic Research,.
- Auclert, A., Rognlie, M., and Straub, L. (2023). Determinacy and Existence in the Sequence Space. *Manuscript*.
- Auclert, A., Rognlie, M., and Straub, L. (2024). The Intertemporal Keynesian Cross. *Journal of Political Economy*, Forthcoming.
- Bilbiie, F. O. (2021). Monetary Policy and Heterogeneity: An Analytical Framework. *Manuscript*.

References ii

- Fagereng, A., Holm, M. B., and Natvik, G. J. (2021). MPC Heterogeneity and Household Balance Sheets. *American Economic Journal: Macroeconomics*, 13(4):1–54.
- Gelting, J. (1941). Nogle Bemærkninger Om Finansieringen Af Offentlig Virksomhed. *Nationaløkonomisk Tidsskrift*, 3.
- Haavelmo, T. (1945). Multiplier Effects of a Balanced Budget. *Econometrica*, 13(4):311–318.
- Woodford, M. (2011). Simple Analytics of the Government Expenditure Multiplier. *American Economic Journal: Macroeconomics*, 3(1):1–35.